The **lowa Stored Energy Plant**

DOE Energy Storage Systems Program Annual Peer Review

November 10 - 11, 2004 – Washington, D.C.

Bob Haug, Executive Director lowa Association of Municipal Utilities

ISEP Project Team

- Project Development Committee: Kent Holst, Chair (Traer): Tom Wind, Consulting Engineer; John Bilsten (Algona); Tom Gaffigan (Harlan); Jerry Haahr (Atlantic); Neil Ruddy (Carlisle); and IAMU support staff
- Funding sources: 74 municipal utilities (\$655,000); Iowa Department of Economic Development (\$50,000); US Department of Energy (\$136,000)
- Project consultants: Burns & McDonnell (preliminary feasibility); Fairchild & Wells (aquifer storage study); Black & Veatch (market analysis, optimal dispatch, proforma investment & cash flow)

Iowa Association of Municipal Utilities (IAMU)

- IAMU members include 550 lowa cities
 - 550 municipal water utilities
 - 136 municipal electric utilities
 - 50 municipal gas utilities
 - 27 municipal telecommunications utilities
- The Iowa Stored Energy Plant (ISEP) is an IAMU power supply project funded by 109 municipal utilities located in Iowa, Minnesota, and the Dakotas

The Iowa Stored Energy Plant (ISEP)

ISEP represents a unique marriage of three known technologies: combustion turbines, aquifer storage of gases, and renewable wind energy

Compressed Air Energy Storage (CAES)

- Fundamentals of CAES:
 - About 2/3 turbine energy used in compression
 - With CAES, air is compressed using low-cost, offpeak energy, including wind energy, and is stored underground
- Two CAES plants are in operation:
 - Germany (290 MW plant operating since 1978)
 - Alabama (110 MW plant operating since 1991)

Mechanics of simple cycle turbines

Mechanics of CAES – generation Motor/ Compressor Generator Turbine Air [Clutch Air **Natural Gas** Combustor 3,800 BTU/kWh Aquifer Iowa Association of Municipal Utilities - November 2004

Mechanics of CAES — reliability/performance

- CAES uses well-proven and highly reliable equipment (common used in petroleum refining)
- Reliability (from Alabama operation)
 - Average 218 starts per year (1996-2001)
 - 90% starting reliability; >97% running reliability
- Quick start capability (Alabama 110 MW unit)
 - 9 min. to full power or 6 min. emergency startup

Mechanics of CAES - performance

- Efficiency of operation
 - CAES uses 4,300 BTU/kWh vs. 12,000 BTU/kWh for simple cycle turbines and 7,000 BTU/kWh combined cycle units
 - Operates efficiently from 10% to >100 output
 - Economically efficient in 100 MW increments
 - Lower temp. (1,600°F vs. 2,200 °F) = longer service life
 - 60% lower emissions than GT
 - Low hot-weather capacity degradation
- CAES is ideal for delivering ancillary services

Other operating information

- ISEP = two 100 mw turbines out at 161 kV
- Compression = 166 MW at 515 psig
- Heat rate (HHV) 4,286 Btu/kW
- Off peak average ambient temperature 44.5 °F.
- Air temp into storage 110 °F.
- Ramp 50% to 100% in 15 seconds
- Low emissions, even at part load
- Black start capability

The Alabama CAES plant

Alabama
Electric
Cooperative

McIntosh Power Plant

Aerial View

The Alabama CAES plant

Alabama
Electric
Cooperative

McIntosh Power Plant

Equipment train and piping

CAES drive train (Dresser Rand)

←Motor/
Generator and
Combustion
Turbine

Motor/Generator and Compressor

Train →

CAES vs. combined cycle gas

- CAES does <u>not</u> need: Boiler (w/ pipes, steam turbine, & step-up transformer), water treatment, gas & liquid fuel systems, water injection sys., inlet air coolers, cooling tower, waste water sys., firewater sys., DCS control sys., large emergency generator
- CAES needs: Storage aquifer or cavern, air compressor, intercoolers using water from aquifer, two clutches, air recuperater (air to air heat exchanger), air injection/withdrawal wells, compressed air piping
- CAES equipment is simpler w/ lower operating costs

Gas storage

Aquifer storage

Illustration

The Iowa CAES site

- Site located in north central lowar
- Good data on storage capability
- Substantial capacity / good pressure 1200'/525 p.s.i.
- Very permiable rock with impermeable cap (12,000 milli-darcies vs. ave. in 100s)
- Access to electric transmission
- Gas pipelines at site

Compressed Air **Natural Gas** St. Peter Aquifer 470 PSIA, 30 BCF

Another conceptual twogas design is shown here. It depends on extent of vertical communication.

> Jordon Aquifer 632 PSIA, 4 BCF

Franconia Aquifer 750 PSIA, 26 BCF

Eau Claire Aquifer 777 PSIA, 16.6 BCF

Eau Claire Mt. Simon 825 PSIA, 26 BCF

Geophysical data analysis

Storage of natural gas

- Key considerations and modifications:
 - Which strata to use (depends on compressor need and storage volume for CAES plant and by utilities/pipeline)
 - Additional wells for injection/withdrawal
 - Use of existing gas from various strata into desired location to be used as cushion gas
 - 1.5 miles of high pressure gas line needed to connect to interstate gas line

Iowa and wind energy

Integrating wind and CAES

- Wind is low-cost generation source
- Wind is not dispatchable
- CAES provides a battery for wind
- CAES/Wind is dispatchable as an intermediate resource. It has flexibility for operation as a baseload plant.

Integrating wind and CAES

- During the daytime, wind generation would be used to supplement the CAES generator output
 - All wind generation would go directly to grid. CAES generation would make up any difference by following the wind generation pattern to present a firm block of power
 - If wind generation was more than schedule needs, excess could be sent to compressor for storage
- At night, wind generation would be used to replace part of the off-peak energy purchases from the grid
 - If the wind generation was more than the compressors could handle, then the excess would be sent to the grid

Generation & Compression for 100 MW CAES Plant for One Weekday With No Wind Generation

Generation & Compression for 100 MW CAES Plant and 75 MW Wind Farm on Weekday

Potential revenue offsets

- Ancillary service revenue potential (examples)
 - Load following
 - Var support
 - Spinning reserves
 - Black start capability (may be rewarded after eastern blackout)
 - Green tag value

Why consider carbon costs?

- Because it is the right thing
- Fuel diversification is needed to hedge cost of emissions Keoto or not a carbon tax or equivalent offset at \$15/ton adds \$17/MWH from coal vs. \$4/MWH CAES
- Other emission reductions likely, e.g., SO_x particulates, Mercury, others?

Summary case for ISEP

- For us, it is a local option for dealing with climate change. It keeps money in the state.
- Supported by customers
 - Very clean plant (local emissions)
 - Uses Iowa's most abundant indigenous energy resource, wind power, to mitigate GHG emissions
- Supported by farmers who receive rents for wind turbines and for gas storage

Summary case for ISEP

- Meets need for intermediate generation with option for base load later
- Good hedge against environmental costs for GHG and other emissions
- Diversifies generation & fuel resources
- Adds renewable resources
- Gas storage under further study

Where things stand

- Municipal utilities have spent about \$700,000 to date
- Plant studies: Burns & McDonnell preliminary cost study complete, additional DOE-funded Black & Veatch market analysis due November 22
- Underground Aquifer Storage: Comprehensive geological analysis and 3-D imaging complete; DOEfunded verification study under way
- Transmission: initial studies complete; additional analysis to begin soon

DOE funded studies (tot. \$136,000)

- Independent verification of aquifer suitability
 - Subcontractor: Fairchild & Wells, Inc. (Houston)
 - Scope: Review of data from prior investigation of site as gas storage facility, subsequent well logs, ISEP seismic data, and other geological information
 - Finding: Adequate storage for CAES, though some reduction in previously estimated storage capacity
 - Status: Task complete

- Assessment of suitability for two-gas storage
 - Subcontractor: Fairchild & Wells, Inc. (Houston)
 - Scope: Review of data from prior investigation of site as natural gas storage facility, subsequent well logs, AVO seismic data collected by ISEP, and other geological information
 - Initial finding: vertical communication between aquifers appears to limit two-gas option
 - Status: ongoing assessment; report by Dec. '04

- Power market forecast
 - Subcontractor: Black & Veatch
 - Scope: Forecast of 20-year market clearing price for electricity in Iowa
 - Status: Report by November 22, 2004

- Production cost modeling
 - Subcontractor: Black & Veatch
 - Scope: Modeling of CAES plant marginal dispatch costs and operating constraints
 - Status: Report by November 22, 2004

- Financial pro forma analysis
 - Subcontractor: Black & Veatch
 - Scope: Pro forma analysis to determine return on investment, as measured by projected cash flows, net present value, and internal rate of return.
 - Status: Report by November 22, 2004

What's next?

- Complete studies
- Assess option to replace gas with biomass
- Report to participants
- Solicit capacity commitments
- Find non-muni participants, if needed
- Plant start-up = 3 years from final approval

Discussion

Contact:

Bob Haug, Executive Director

Email: <u>bhaug@iamu.org</u>

Phone: 515-289-1999

Web site: www.iamu.org